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As the width of a vertically well-mixed estuary increases, the longitudinal dispersion
coefficient eventually reduces from a value associated with the transverse shear of
the tidal current to a much smaller value associated with the oscillatory vertical shear.
In this paper the final stages of this transition are investigated, with particular emphasis
on buoyancy effects due to the salinity distribution. The central mathematical result
relates the long-term longitudinal dispersion coefficient to the local unsteady horizontal
dispersion coefficients and to the residual horizontal circulation. A useful consequence
of this result is a demarcation of the parameter regimes in which the various mass-
transport mechanisms are dominant. The Thames downstream of London Bridge is
revealed to be buoyancy dominated.
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1. INTRODUCTION
In recent years there have been significant advances in the understanding of the effects of flow

oscillations upon the longitudinal dispersion of passive contaminants (Okubo 1967; Holley et al.
1970; Chatwin 1975). For vertically well-mixed estuaries with transverse diffusivity of about
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468 R. SMITH

0.1 m?s~! (Talbot & Talbot 1974) the implications depend upon whether the estuary is narrower
than 100m, wider than 500 m, or of an intermediate width. In narrow estuaries the long-term
dispersion coefficient is simply an average over the tidal period of the quasi-steady dispersion
coefficient associated with the transverse shear (Smith 1977). This means that initially the
dispersion increases as the square of the channel breadth. For the intermediate-sized estuaries
there is insufficient time between tides for significant mixing across the estuary, and the trans-
verse shear is no longer fully effective as a dispersion mechanism. Thus, the dispersion coefficient
begins to grow less rapidly with increasing estuary breadth. The maximum contribution of the
transverse shear to the longitudinal dispersion coefficient occurs when the estuary breadth is
about 250m (Holley et al. 1970). For wide estuaries the longitudinal dispersion decreases till
eventually the transverse shear is dominated by other dispersion mechanisms (Fischer 1972). In
particular, the mechanism which persists out into the open sea is that associated with vertical
shear (Elder 1959; Bowden 1965). The low value of the dispersion coefficient means that for
wide estuaries the time-scale for longitudinal dispersion can be several months, and is well in
excess of the several days necessary for lateral mixing. Thus, as is more transparently the case for
narrower estuaries, for long-term dispersion the concentration gradients are principally along
the estuary and it is appropriate to regard the long-term dispersion process as being primarily
longitudinal.

There has been a similar advance in the understanding of buoyancy effects upon longitudinal
dispersion in steady flows (Hansen & Rattray 1965; Erdogan & Chatwin 1967; Imberger 1976).
The fluid in the deeper, faster moving part of the flow has originated further upstream than the
more slowly moving fluid in the shallows. In this way a longitudinal density gradient leads to a
transverse density gradient, and thence to a buoyancy-driven secondary flow across the channel.
The secondary flow augments the transverse turbulent mixing and so tends to reduce the con-
taminant concentration variations across the channel. The net result is that the first noticeable
effect of buoyancy is to reduce the longitudinal dispersion associated with the transverse shear
in the primary flow (Smith 1976). As the longitudinal density gradient increases, the buoyancy-
driven longitudinal current becomes comparable with the primary flow. At this stage the
transverse shear, and hence the longitudinal dispersion coefficient, grows with increasing density
gradient (Imberger 1976). Finally, when buoyancy effects are sufficiently strong, the secondary
flow leads to an almost uniform contaminant concentration across the channel, and the dominant
contribution to the longitudinal dispersion becomes the vertical shear in the buoyancy-driven
longitudinal current (Hansen & Rattray 1965; Chatwin 1976).

Real estuaries are subjected both to tidal and to salinity effects. Thus, ideally, theoretical
analyses should include at least these two effects, if only to determine for which estuarine con-
ditions the above-cited simpler models are applicable. Fischer (1976) makes the same point in
the concluding remarks to his review article on mixing and dispersion in estuaries: ‘It is not yet
possible to look at a given estuary, compute the values of some appropriate dimensionless
parameters, and say with certainty which mass-transport mechanisms are the most important
or what factors control the intrusion of salinity’.

Macqueen (19784, 1979) has made a heuristic attempt to make headway with this problem.
He notes that tidal and weak buoyancy effects can both be characterized as reducing the longi-
tudinal dispersion coeflicient from the reference level for a steady constant density flow. Thus,
a reasonable composite model is to include two reduction factors associated separately with
buoyéncy and flow oscillations. For these factors Macqueen (19784, 1979) uses the results
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Ficure 1. Sketch of the relationship, with and without buoyancy between the longitudinal dispersion coefficient
E and the width 2B in a shallow oscﬂlatory ﬂow, where % is the mean depth {|U]> the tidally-averaged current,
and o the angular frequency. -

calculated by Smith (1976) and by Holley ez al. (1970). An important feature of this composite
modelling is that to assess the non-dimensional cross-sectional mixing time, allowance must be
made for the buoyancy-driven secondary flow. The most marked effects of buoyancy are found
to arise when the estuary is wide (see figure 1). The buoyancy-enhanced transverse mixing gives
increased importance to the transverse shear and leads to much larger values of the longitudinal
dispersion rate. Indeed, the observed longitudinal dispersion coefficient in some major estuaries,
such as the Thames, can exceed the maximum values predicted by Holley et al. (1970). This
anomaly is resolved by Macqueen’s results.

The present paper is likewise directed towards the problem pointed out by Fischer (1976) in
the above quotation. An analytical investigation is made of the combined effects of salinity and
tides upon longitudinal dispersion in wide vertically well-mixed estuaries. As well as the oscil-
latory transverse and vertical shears, allowance is made for the buoyancy-driven secondary flow
and longitudinal circulation. This choice of additional physical effects was motivated by
Imberger’s (1976) study of a non-tidal buoyancy-driven horizontal circulation, and by the
need to confirm Macqueen’s (19784, 1979) heuristic deduction that for wide estuaries buoyancy
increases the dispersion.

The analysis begins in the next section with a list of hypotheses. This unusual step for an
applied mathematics paper is necessary because of the very wide range of possible mass-transport
mechanisms. Nevertheless, since there are at least two modes of action for salinity and for tidal
effects, the results can be expected to cover a significant range of estuarine conditions. To ensure
that this is indeed the case, the subseqent derivations are based upon maximum-generality
scalings. This mathematical device is exemplified in § 3, where use is made of the hypothesis
that the estuary is much longer than it is wide. The following section derives the corresponding
preliminary simplifications of the equations for the flow dynamics and for the contaminant
dispersion. Maximum-generality scalings are used again in § 5, where this time the key hypothesis
is that the estuary is much shallower than it is wide. The resulting theoretical predictions of the
concentration variations across the estuary and of the flow are detailed in § 6.

One of the main fruits of this extensive analysis is arrived at in § 7. The results of §6 are used
in Fischer’s (1972) formulae to obtain mathematical expressions for the three contributions to

33-2
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470 R. SMITH

the longitudinal dispersion associated with the steady transverse shear, the oscillatory transverse
shear and the osicllatory vertical shear. For the particular class of estuaries being studied here
it happens that, even with the maximum-generality scalings, the steady vertical shear gives a
negligible contribution to the dispersion coefficient. An alternative derivation of these key
mathematical expressions is given in the appendix.

To obtain quantitative results we need to specify the spatial structure and time-dependence
of the turbulence. A particularly simple model is described in § 8. The corresponding qualitative
predictions for the three contributions to the longitudinal dispersion coefficient are presented in
§ 9. An important aspect of these results, which is highlighted in § 10, is that they reveal the most
appropriate choice of dimensionless parameters and the transition zones for the dominance of
different mass-transport mechanisms. Thus, for a limited class of estuaries, we are able to answer
the important question posed by Fischer (1976).

2. LI1ST OF HYPOTHESES AND EQUATIONS

It can readily be argued that salinity variations have a negligible effect upon the primary
flow in a well-mixed estuary. This is because the pressure head associated with a salinity change
of 32%, is only 0.25 m, while the variation in tidal height along an estuary can be several metres
(i.e. comparable with the tidal amplitude). If dispersion were simply related to the bulk flow,
then no useful purpose would be served in studying the dependence of the dispersion upon the
salinity gradient. However, as was first recognized by Taylor (1953), dispersion in a currentis a
subtle process and depends upon readily overlooked high-order aspects of the flow. In particular,
it is velocity and concentration differences that are important. For example, in an extremely
wide estuary, the buoyancy can cause a systematic drift whereas the tidal motion alone would
periodically return a fluid element to the same position.

The above discussion serves to illustrate that, in studies of contaminant dispersion, exceptional
care needs to be taken before any aspect of the flow is neglected. Equivalently, it is desirable to
be precise in the specification of any simplifying assumptions. Thus, we adopt from pure
mathematics the formal step of listing the hypotheses:

(1) the estuary is much longer than the tidal excursion and the estuary width;

(ii) the estuary is much shallower than it is wide;

(iii) lateral mixing takes place over more than one tidal period;

(iv) vertical mixing takes place in less than the tidal period;

(v) longitudinal and lateral salinity gradients, vertical and lateral velocity shears all modify
the dispersion;

(vi) the turbulence can be modelled by tidal-averaged eddy diffusivity coefficients and the
tidal current can be assumed to be sinusoidal in time.

The first four hypotheses exclude bay-like estuaries, steep-sided fjords, narrow estuaries, or
partially stratified estuaries. However, these essentially geometrical assumptions are well satisfied
by the middle and lower reaches of a major estuary such as the Thames. The fifth hypothesis
ensures that we concentrate our attention upon the interesting transition regimes rather than
on situations which involve only a single-dispersion mechanism. The sixth hypothesis is of an
entirely technical character and is not invoked until § 8 of this paper. Its use is standard procedure
in estuarine studies and greatly foreshortens the mathematical analysis. The justification for this
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DISPERSION IN WIDE ESTUARIES 471

usage is that the horizontal dispersion coeflicient can be expressed as a tidally averaged quantity
(Fischer 1972), and so the detailed inter-tidal behaviour is of reduced importance.

As the underlying mathematical model for the estuary flow dynamics we represent the
turbulent transports of mass and of momentum in terms of eddy-diffusivity tensors with principal
axes in the longitudinal, transverse and vertical directions. The ensuing calculations reveal that
the dispersion depends upon gross rather than detailed properties of the turbulence. Thus, there
would be little advantage to be gained in the use of a more sophisticated higher-order turbulence
closure model. Other assumptions are that we neglect channel curvature and the earth’s
rotation (Dyer 1978; Smith 19784). Also, we make the Boussinesq approximation, and include
the buoyancy effect due to salinity variations but neglect the corresponding inertia variations.

For compatibility with earlier work of the author (Smith 1976, 1977), we use a coordinate
system (£,y,z,7) that moves with the cross-sectionally averaged tidal velocity U. Thus, prior
to our exploiting the simplifying hypotheses (i)-(vi), the equations of motion and boundary
conditions have the formidable form:

0, ¢+ (A/Ag) (u—U) dgc+03, ¢ +wdyc = (A] Ag) 35 (1ey (A A) 356) +9, (130, 6) +8,(5050), (2.1)

0, u+(A/Ay) (u—U)0pu+v0,u+wd,u+ (A/4,) O p
= (4/4,) 8y(2v11(4/ Ao) Oge) + 0, (1[0, u + (A/ 4y) Ov]) +0,[v15[0,u + (4/ Ao) O ]),  (2.2)

0, v+ (A4/4,) (u—U) v +v0,v+wd,v+0,p
= (4/4,) 3(v12[0, u + (4/4,) 3v]) +8, (20520 v) + 0, (v3[0,0 + 0, w]),  (2.3)

o, w+(A/Ay) (u—U) pw+v3,w+wd,w+3,p+ fgs
= (4/4,) O(v13[0,u+ (4/Ay) Og w]) +0,(ves[0,v +3, w]) +0,(2v330,w), (2.4)

(4/4,) Ogu+0,v+0,w = 0, (2.5)
u=v=w=20,c+(A4/4y)*0hdc+09,h0yc =0 on z=—h, (2.6)
v13[0,u+ (4/Ay) ag w] —(4/4,) ag ClgC—p+2v1i(4/4,) ag u] - ay Qv1al0, u+ (4/4,) ag”]
= V93[0,v 40, w] — (4/A,) O {v12[0, u+ (4] 4,) O v] — 0, L[gL —p + 21550, V]
= g8—p+2v50,w— (4] 4,) O {v13[0,u + (4] 4y) Oy w] — 0, {ve3[0, v +0, w]

=0,8+(4/4,) (u—U) 8L +v0, {—w (2.7)
=0,c—(4/A4y)?0;§0;c—0,80,¢
=0 on z= §(§,yaz,7),
vy = vy(Ri), &; = Kk(Ri) } (2.8)
with Ri = —pg0,s/[(0,u)?+ (0,v)%]. '

Here u, v and w are the velocity components in the downstream transverse, and vertical directions,
¢ the concentration of the conserved contaminant (which may be salt), p the excess pressure
above the mean-hydrostatic, fg the reduced gravity for salt, { the surface elevation, Ri the vertical
gradient Richardson number, «; are eddy diffusivities for the contaminant, v;; are eddy
diffusivities for momentum, and 4, 4, are the estuary cross-sectional areas at the present time
and at time 7 = 0.
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472 R. SMITH

3. MAXIMUM-GENERALITY SCALINGS

Clearly, considerable simplifications will have to be made before the above equations (2.1-2.8)
can be solved. The essential mathematical framework for achieving this end is as employed in
the author’s paper concerning buoyant contaminants in steady flows (Smith 1976). First, use is
made of the geometrical fact that estuaries are typically much longer than they are wide (hypo-

theses (i)). A small parameter
e=%¥ (3.1)

is introduced where # and % are respectively representative width and length scales of the
estuary (see figure 2). The governing equations (2.1)—(2.8) are to be solved only to leading order
in this parameter €. This results in a separation of the equations into a longitudinal dispersion
equation for the contaminant concentration, and equations in the estuary cross-sectional plane

F1gure 2. Definition sketch of length scales.

diffusivities comparable secondary flow
transverse
&’ P> ¥
dispersion €
\ 4
s—5 drag
El -7 527
¥ Y
Richardson number reduced gravity
. 4 .
e AR
Y
‘effects . )
Jongitudinal residual current
7=0 -t 27
dispersion

F1cure 3. Derivation of the maximum-generality e-scalings.
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DISPERSION IN WIDE ESTUARIES 473

for the detailed flow dynamics. The e-ordering of the many terms in the governing equations is
crucial in determining which physical effects are to be retained.

Such is the wide range and large number of independent physical parameters, that appeal to
the actual numerical values in one estuary might lead to a theory appropriate for just that
estuary alone. Instead, we select the scalings so that certain key physical effects and as many as
possible additional effects are retained. Thus, although we achieve the simplification inherent in
the long estuary hypothesis (i), it is done with a minimum loss of generality. For brevity the
derivation of the scalings is summarized in figure 3. The starting point is the assumption that
the eddy diffusivities are of order #%e”, where % is a typical tidal velocity and the exponent y
is to be determined. The final outcome is that for maximum generality the optimum choice is
v = 0. The full scalings, incorporating the further shallow-water hypothesis (ii), are listed
in § 5. »

The resulting field equations and boundary conditions, with the relative sizes of terms indicated
by e-exponents, are:

€2pc+0,c+e(1+ed’) (u—U) dc+v0,c+wd,c
= 0,(k0,¢) +0,(k30,¢) +€>(1+ed") O(x, (1 +€4") O c), (3.2)

0, u+v0,u+wd,u+0p = 0,(v150,u) +0,(v130,u) + O(e), (3.3)
0,v+v0,v+w0,v 46710, p = 0,(2v5,0,v) +0,(vy5[0,v 4+ 0, w]) + O(e), (3.4)

0, w +vd, w+wd, w +e~1Bgs + €71, p = 0, (Vy5[0,v + 0, w]) +0,(2v550,w) + O(¢),  (3.5)
e(1+ed")O;u+0,v+0,w =0, (3.6)
u=v=w=20,+0,h0,c+0(e?) =0 on z=—k, (3.7

V130, = Vg30,0 = g{—p=w—€0,{=0(e?) on z=¢f (3.8)

v = vy(Ri), &;=K;(Ri) with Ri=—e8g0,s/[(0,u)%+ (9,v)%]. (3.9)

To revert to the original unscaled equations (2.1)-(2.8) it suffices that we ignore all the ¢
dependence (i.e. formally set ¢ = 1). The major differences from the corresponding equations
(1a—g) of Smith (1976) are that the tidal oscillations take place on the fast time scale 7, rather
than on the slow time scale 7" = €27 of the longitudinal dispersion process (Cole 1968, chap. 3),
the explicit coupling between the pressure field and the tidal elevation, and the allowance for the
Richardson-number dependence of the eddy diffusivities. More minor changes are that the only
buoyancy effects included are those due to salinity, and the occurrence of the fractional changes

ed’ = [A(E,7) — 4y(€)]/40(8)

in the cross-sectional area.

4. LONG-ESTUARY APPROXIMATION
Proceeding as in Smith (1976) we simplify equations (3.2-3.9) by representing the dependent
variables as regular power series in the small parameter ¢:

¢ =cO+e®+e2® 4., (4.1)

where ¢® are independent of ¢. The main features are that ¢® is a function only of (¢, T, the
tidal elevation {@ is uniform across the estuary, the pressure field is hydrostatic

1O = gl — Bgsz, (42
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1

A — Y f—

fresher saltier fresher

Ficure 4. Streamlines for the secondary flow.

and that the secondary flow in the y —z plane can be described by means of a stream function
(see figure 4):
VO =9,9, w®=-9,9. (4.3)
The detailed flow dynamics are governed by the reduced set of equations
0, ¢V +0, %0, ¢V —0, ¥0,c® —9, (k3 0 ¢W) — 0, (K 0, ¢W) = (U—u®) 0,0, (4.4)
0, 4@ + 0,90, u® — 0, 0, u® — 0, (v150, u®) — 0, (v;30,u®) = — g0, &+ B0, 5z, (4.5)

(a; +0, 90y — 0, ¥0,) [0 + B 4] — (& — 0F) [v2(0F — 0F) Y] — 20, O,[ (Vae +v33) 8, 0, Y] = S0, s,

(4.6)
u® =1 =0,y +0,h0, Yy =0,cV+0,40,cM =0 on z=-h, (4.7)
V130,U® =032 Y =Y =0,6V=0 on z=0, (4.8)

Vig = V(Ri®),  k; = i(Ri¥)  with  Ri® = — g0, sO/[(3,u)* + (E¢)*]. (4.9)

For clarity the superscripts @ have been omitted on the eddy diffusivities vy and . Without
loss of generality we can require that

U=dO 0=¢ =0, (4.10)

where the overbars denote cross-sectional average values. In particular this implies that any net
flow is relegated to higher-order contributions to « (i.e. at leading order in ¢ the bulk flow is
purely oscillatory.)

The corresponding longitudinal dispersion equation can be derived by taking the cross-
sectional average and then the tidal average of the order €2 terms in equation (3.2). Using angle
brackets {...) to denote averaging with respect to the short timescale 7, the dispersion equation

can be written ,
Ay 07 ¢+ Q0 ¢ — Op(Ap{ (U —u®) V) — B, (A (K1) 0 ¢) = 0 (4.11)

(Fischer 1972). Here 4, is the estuary cross-sectional area at 7 = 0 and @ is the volume discharge
rate of fresh water into the head of the estuary. Since the changes in the tidal areas and the tidal
excursions are both small, it is permissible in equation (4.11) to replace 4, by any other con-
venient reference cross-sectional area and to replace £ by the more usual Eulerian coordinate x.
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DISPERSION IN WIDE ESTUARIES 475

5. SHALLOW-WATER SCALINGS
The complexity of equations (4.4)—(4.9) is evidence of the minimal loss of generality. Not
only is there the full complement of buoyancy terms (Smith 1976), but also there are time
derivatives admitting of the flow oscillations, and allowance for the variation in tidal height
along the estuary.
Continuing as in Smith (1976), we make use of the further geometrical fact that estuaries are
typically much shallower than they are wide (hypothesis (ii)). This yields a second small

parameter
8=H/%, (5.1)

where S is a typical water depth (see figure 2). Also, we define a new vertical coordinate
z* =071z, (5.2)

The effect of the §-expansion of the dynamical equations (4.4)—(4.9) is to decouple the lateral
and vertical features of the flow field. Our aim is to achieve this simplification with a minimal
loss of generality. The outcome is the scaled equations (5.5)—(5.10) given below.

srtics A ompar. . !
diffusivities vertical shear dispersion lconn;ir:u(fil;]ael residual current’
- - .
8’7 > 52 v !
dispersion &

buoyancy Y driven

tidal frequency §—=5 reduced gravity
Y 571 . 517 572
Y
‘comparable lateral dispersion secondary flow
y o3 ‘transverse coefficient
2 I 56-37 - 527
dispersion

F1cure 5. Derivation of the maximum-generality d-scalings.

As before, the lengthy argument leading to the maximum-generality scalings is summarized
in a flow diagram (figure 5). From the initial assumption that the eddy diffusivities are of order
PBUS7, it eventually unfolds that to satisfy hypotheses (i)—(v) the exponent y must be chosen
equal to 4. The analysis of §§ 3 and 4 guarantees the consistency of the e-scalings. Thus, in figure
5, only the é-scalings are indicated. With asterisks to denote order 1 quantities with respect to
the basic dimensional scales # and %, the full scalings of the many physical quantities are:

Vi = 3%1’;';: Ky = a%K;k: é’ = 3%€§*,
'/f = 8%¢*: ar = (ﬁa‘:’k; ﬂg = 8%6“1ﬂ*g*, (5‘3)
g =0"le2g* (V= 0tec* Q= 3‘3’€Q*.

34 Vol. 2g6. A
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476 R. SMITH

Even though the maximum-generality scalings are simply a mathematical device to ensure
the retention of as many physical effects as possible, it is natural to check that their use does
correspond to a physically realizable parameter régime. As a feasible specification of the basic
scales we take

& =20km, #=0500m, # =5m, %=05ms" ie €=0.025 &=0.01 (54)

Using these scalings in the above expressions (5.9), we find that the reference values for the
major physical quantities are

eddy diffusivities: 0.25m2s™1;
tidal elevation: 1.25m;
lateral velocities: 0.05ms™1;
tidal frequency: 104515
reduced gravity: 0.2ms~2;
gravity: 80ms—?;

volume discharge rate: 1m3s~1,

Most of the values indicate that the theory gives realistic weights to the corresponding physical
effects. However, from the rather low estimate for the river flow rate we can deduce that in
practice, the salinity distribution will tend to be pushed out towards the estuary mouth. Similarly,
from the large reference value for the gravitational acceleration we can infer that, in this case,
there must be a relatively large free-surface slope to maintain the tidal current, and hence that
there will be significant attenuation of the tidal amplitude along the estuary.

With the asterisks and the superscripts suppressed, equations (4.4)—(4.9) can be rewritten as

—0,(Ky 0,) + 80, 6+, Y0, 6 — B, Y2} — 8%, (K0, ¢) = B(U—1u) 0y, (5.5)
—0,(v150, 1) +6{0, u+0, Y0, u—0, Y, u} = — g0, +6Bgz0, 5+ 0(62), (5.6)
B0 02 ) + 800, + 0,0, — D, YOI = gD, 5+ O(8) (5.7)

U= =0,y +8%, k0, = 0,c+8%, ko, c =0 on z=—Fh, (5.8)
V30,8 = Vg2 =y =9,c=0 on z=0, (5.9)

v = vis(Ri), ks = K(Ri) with Ri = — £gd,s/[(0,u)2+3(Ey)?]. (5.10)

6. DETAILED DESCRIPTION OF THE FLOW

To solve equations (5.5)—(5.10) we use a regular perturbation expansion in powers of d:
u=u0+3u1+..., (6.1)

where u; are all independent of d. For neatness we shall continue to suppress the ® superscripts
associated with the e-expansion. In particular, ¢ is used to denote the small departure ¢ in
contaminant concentration from the cross-sectional average value ¢ = ¢, and there is a similar
usage s, § for the salinity.

At leading order in & we find that the concentration perturbation ¢, is vertically uniform, that
the tidal current is driven by the slope of the free surface:

_fz Z ,
Uy = gG)ng_h -l;;dz ) (6.2)
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and that the transverse circulation is buoyancy-driven:

z z dz" [0
vo= [ oz [ = ted, 0z~ py ez (6.3)
-h —h Vo3 Jo

(i.e. there is a tendency for light fluid to flow over the less dense fluid). Here u, is required to have
cross-sectional average U, and the integration constant i is chosen so that the stream function
is zero at the free surface.

The order & terms in the diffusion equation (5.5) together with the zero flux boundary con-
ditions (5.8) and (5.9) form a non-homogeneous boundary value problem for ¢,. Performing an
integration with respect to z we deduce that ¢, must satisfy the integrability condition

0, ¢ = (Up—luo]) O 2. (6.4)
Here we have used the notation |...| to denote the vertical average value (see table 1). Thus,

the oscillatory part of the leading-order concentration perturbation is exactly out of phase with

TABLE 1. AVERAGING NOTATION

a cross-sectional average
{a) tidal time average

a fluctuating part of a
llall vertical average

a = (@) +(lla—dl}+<a—llall}+a"+ lla—dl+ (a— [lal)".

the tidal current and does not contribute to the dispersion, i.e. to the first approximation there
is advection back and forth along the estuary without any net dispersion.

Subject to the integrability condition (6.4) being met, the corresponding solution for the
vertical concentration gradient is

0 = L[ (g o) 2+ L20, (6.5)

3J—h 3
An immediate implication of the result (6.5) is that the Richardson number, as defined by
equation (5.10), is only of order 8. Thus, in equations (6.2), (6.3), (6.5), the eddy diffusivities
should have values appropriate to constant density flows. There are a number of alternative
models for the reduction in eddy diffusivities due to stratification (Breusers 1974). A model

that is reasonably accurate for Ri < 0.25 and particularly simple analytically is one attributed
to Vreugdenhil: _
(v15)1 = — %2 (Ri)1 (V13)o- (6.6)

It is only in equation (6.10) below that stratification effects need to be included. Thus, for
convenience we shall omit the zero subscript and use v;;, «; to denote the constant density values
for the eddy diffusivities.

Continuing the analysis of the diffusion equation (5.5) to order &%, we obtain the further
integrability condition

. o[
ko, |ley| = R(Uy~ fleeal]) 0;¢+0, (Al 9y €o) +@f_h§”o 0,0, dz. (6.7)
34-2
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There is a bounded solution for |¢;|| only if the right-hand side terms have zero tidal average
(see next paragraph). Substituting from equation (6.5) for the vertical concentration gradient,
and using the notation (...)" to denote the fluctuating part of a term, we infer that

ileal = WU~y g+ & (Ha+ 210, e) +2,e ([ L[ a0l dzncz)
T £ ay 2 Ky (/A1) £ ay ks _a 0 0 2
(6.8)
Since U, is defined to be the cross-sectional average of u,, the solution of equation (6.8) auto-
matically satisfies the constraint ¢; = 0 (see equation (4.10)).
The non-secularity condition invoked above yields a transverse dispersion equation for the

non-oscillatory contribution to ¢,. Letting y,, y_ denote the two sides of the estuary and per-
forming one integration with respect to y, and also making use of the result (6.4), we obtain

@y i/l = e [ il dy-+nlou+ vy [ 2uduol ary

~(J [ o twana)). o

Ficure 6. Streamlines for the residual horizontal current.

To complete our determination of the dominant terms involved in the longitudinal dispersion
coefficient it remains for us to calculate the residual current {||u,]|) (see figure 6). This entails
solving the order ¢ terms in the longitudinal momentum equation (5.6):

- z _(® 2 s [? 2@
Uy = g0 (‘,’lf —Ldzl—ﬂgagsf =L dz, — g0, (‘,’of ——(;L)ldz’
V13 —-nV13 - Vig

~h
2 dzl 0
- — | Qg+, 0y up— 0,10, 1) dz,.  (6.10)

—nVis Jz

Here the residual slope (9, §;) of the free surface is determined so that the order & correction to
the bulk velocity U; = &, is purely oscillatory.
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7. FACTORIZATION OF THE DISPERSION GOEFFICIENT

Consistent with the above §-expansions, the dispersion equation (4.11) becomes

with

Edge = {(Uy—uo) e + (U1 — 1) co)- (7.2)

It is noteworthy that in the expression (7.2) for the longitudinal dispersion coefficient E, neither
of the terms

{(Co—ug) oy, <ky)Bgé (7.3)

is retained. The first of these is identically zero owing to the exactly orthogonal phases of (U, — «,)
and c,, while the turbulence term is order ¢ smaller than the retained terms. This is in complete
contrast to the situation for steady flows where the terms (7.3) are dominant (Smith 1976).

A nice feature of the double averaging involved in the definition (7.2) is that a decomposition
of the velocity and concentration fields into steady /fluctuating and vertically uniform /vertically
varying parts: ‘ :
co = Llleoll >+ <e = lleoll> +lleoll” + (c0 = l1call)’ (7.4)

(see table 1) leads to a similar decomposition of the dispersion coefficient (Fischer 1972):

E=Es+E+Ey, (7.5)
with
Eg0;¢ = — {Ju]> <ol 5 (7.6)
Eq ;¢ = {(Up—luol) x> + Ty~ llal))" llcoll">s (7.7)
Ey 655 = ((“”o" —up)" (61— “”1")'> (7.8)

Here the three contributions to E are related to the steady residual circulation in the horizontal
plane, the transverse oscillatory shear, and the vertical oscillatory shear. A fourth contribution,
related to the steady residual circulation in a longitudinal vertical plane, does not arise until
the next order in & (i.e. products involving {u; — |u,|» and {¢; — ||¢;||)). This is quite different
from partially stratified estuaries, for which the above three terms are commonly neglected and
only the fourth term is retained (Hansen & Rattray 1965; Chatwin 1976).

The principal shortcoming of equations (7.5)—(7.8) as regards the prediction of the salinity
and other contaminant distributions along estuaries, is that the equations involve the concen-
tration variations across the estuary. However, in the present context we have the theoretical
results (6.4), (6.5), (6.8), (6.9), to provide us with that information. As a consequence of our
use of maximum-generality scalings, the resulting expressions are extremely lengthy. Thus, as
a preliminary we introduce the combinations of terms

== [ o=l az] |, (1.9
D= | B[ ol 21, (1.10)
K = |k +98/xs|, (7.11)
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Y
@ = [ B dys (7.12)
0= [ 2l o (7.13)

Here D), D, and K have the dimensions of diffusivities and can be interpreted as being the
coefficients in the local dispersion matrix for combined longitudinal and transverse dispersion
(see appendix A), @ is a stream function for the residual horizontal circulation, and ¢ is a dimen-
sionless measure of the oscillatory transverse shear.

In terms of these quantities, equation (6.9) for the quasi-steady transverse concentration

gradient can be re-written (@, 6 IKY = 9 6({ D) + h(Kg) — KDy} (7.14)

The corresponding representations for the three dominant contributions to the longitudinal
dispersion coefficient are

By = Ao v 2?12_; (7.15)
ol KD KK (D

Ey = Z;L_ {/l(Kq >__—(_K7_h<qu>+—ﬁ(>—} dy, (7.16)

Ey = A—l-o f :f {Iz(D0> - ”g%; : KDy + "-—-—--<K<9’I>(§D l>} y. (7.17)

Since it is only the sum Eg+ Ey + Ey that is of physical significance, the above formulae (7.15)—
(7.17) have been simplified by the deletion of cancelling terms (i.e. of terms linear in @).

The leading terms in the expressions for Eg, E; and Ey respectively can be recognized as
being in agreement with the results of Imberger (1976), Okubo (1967) and Bowden (1965). The
many additional terms represent the interplay between different physical effects. Macqueen’s
(1978 @) work can be regarded as being a multiplicative interpolation formula for £ between
the two limiting cases when buoyancy is dominant and when flow oscillations are dominant. The
complexity of equation (7.16) would suggest that in general E is not separable into two factors
associated with these two key physical effects (see equation (9.10) later in this paper). Such is the
importance of the formulae (7.15)—(7.17) that it is desirable to check the validity of more than
just the leading terms. This is done in the appendix.

Intuitively we can expect that, allowing for advection with the freshwater discharge, the
tidally averaged flux of a contaminant will be directed towards regions of relatively low con-
centrations, i.e. that the longitudinal dispersion coefficient E is positive. At first sight the negative
and cross-product terms in equations (7.16) and (7.17) would appear to admit of the opposite,
unacceptable, possibility that E could be negative. Indeed, the author’s original motivation for
seeking an alternative derivation of these crucial formulae was the strong suspicion that for
this reason they were in error. However, if we revert to the definitions (7.9)—(7.11) of the local
instantaneous dispersion coefficients D,, D;, K, then it can be verified that E is given by the
positive definite expression

=g [ i G (™ o) D)
j‘ij‘ <,<3 ((quK><D1>;ﬁ gy +f (o — || #o]) dzl) >dzdy (7.18)

Thus, as befits a diffusivity, the longitudinal dispersion coefficient £ is necessarily positive.
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8. LOGARITHMIC VELOCITY PROFILE

The results of the previous section show that to evaluate the three contributions to the longi-
tudinal dispersion coefficient it suffices that we can calculate the eddy diffusivities k3, k, and
the flow quantities uy, ¥ and (||l#;|) (i.e. the tidal current, secondary flow and the residual
circulation). In general these are substantial problems in their own rights (Maxey 1978; Le
Blond 1978). However, if we are satisfied with qualitative results, such as a classification scheme
for wide well-mixed estuaries, then we can alleviate these difficulties by invoking hypothesis
(vi). That is, the tidal oscillations are taken to be sinusoidal in time and the turbulence is
modelled by tidal-averaged eddy diffusivity coefficients.

Shear dispersion depends upon the combination of velocity shear and of concentration
gradients. In the wall region the eddy diffusivities v,5, v,3, k5 for the vertical transport of momen-
tum and of concentration become small. Thus, the velocity shear and the concentration gradient
can both be large, thereby giving a significant contribution to the horizontal shear dispersion.
If the channel bed is sufficiently smooth, there is in addition a thin viscous sublayer in which the
eddy diffusivities approach their extremely small molecular values. The no-flux boundary
condition implies that the concentration gradient tends to zero at the bed. Thus, although there
can be strong velocity shears in the viscous sublayer, there is a negligible contribution to the
horizontal shear dispersion. Consequently, it is principally in the turbulent wall region that the
modelling of the eddy diffusivities need to be accurate and, except for small-scale laboratory
experiments (Chatwin 1971, 1973), it is justifiable to ignore any viscous sub-layer. A convenient
and suitably realistic model for the eddy diffusivities is

Vig = 913"(“30% (1—7n)n, where 7 =9+ (1+2z/k)(1-74), (8.1)

with similar formulae for v,3 and k5. Here 95 is a dimensionless constant (approximately 0.4),
(u% )t is the root-mean square friction velocity, and 74 £ is a roughness height. The free-surface
and bottom boundary conditions are to be applied at the positions # = 1 and % = 9. To achieve
algebraic simplifications we shall neglect explicit powers of 7, (i.e. roughness heights are typically
only a few centimetres while water depths are several metres).

As is well known, the diffusivity distribution (8.1) leads to a logarithmic velocity profile

Uy = — (ghag 50/913<”§<>%) In (/74). (8.2)

Except near the turn of the tide, the longitudinal velocity is of order % greater than the transverse
velocity. Thus, to a first approximation, we can take the instantaneous value of the friction

velocity to be given by the formula ~
i = |ghd &yl (8.3)

In particular, u, varies as the half-power of the local water depth. Using this spatial dependence
of (u% )}, it is easy to show that the free-surface slope is given by the Chezy formula

U0<]U0]> = "Fzgh-aggo, (8-4)
and that u, is related to its cross-sectional average value U:

uy = Up(1/T05) (h/R)E1n (9/74)- (8.5)
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Here the non-dimensional Chezy coefficient I is related to the depth profile across the estuary

1 Y+ (h / ]i)%
= In (1 —1]dy. 8.6
[ m /a0 -1y (5.6)
The logarithmic factor means that I" will be moderately large, in the range 15-25 depending
upon the shape and roughness of the estuary bed.

An attractive feature of the representation (8.5) is that it clearly reveals time, lateral and
vertical structure of the longitudinal velocity profile. The corresponding representation for the

vertical eddy diffusivities is
vig = Dig I LUyl (R/R)E (1 =) m, (8.7)

i.e. diffusivity proportional to the three-halves power of the local water depth. For completeness
we note that for the transverse turbulent mixing coefficient «, the representation is

Ky = Ry DTy ) (/BB (8.8)

where the dimensionless empirical constant &, is approximately 0.2 (Fischer 1973).

The key results (8.5), (8.7) now make it straightforward for us to evaluate the formulae (6.3)~
(6.10) concerning the detailed structure of the flow field and the transverse concentration
distribution. First, we perform the triple integration (6.3) and obtain the stream function for
the buoyancy-driven secondary flow:

/J’ga sof3T 5 o plny
Vo= BT (/) {"(1 ) [ln(l/’l]*)—-l]}' (8.9)

Already we are in a position to calculate the components Dy, D; and K of the local dispersion
matrix. This merely entails the evaluation of the vertical integrals (7.9), (7.10), (7.11). Un-
fortunately, all three dispersion coefficients involve the non-elementary definite integral

J‘ R h”’ =2 2 =3 = 0.4041 (8.10)
(Elder 1959). Thus, the results are rendered less attractive by the occurrence of decimal terms
0.4041U%%
Dy = mm =i (B/R)2 8.11
b= Ton eIt MM (8.4)
B0, s TU K (h/h)% { 1.6164 }
D, = - , 8.12
S VO X (AP W Y VTR (512

K = 3%, I Uy |> (/)
. (Bgd, 502 Ih5(h/h)* { B 3 L 24246 }
(|| > 96935 %, [In (1/7%) =11 " [In (1/9,) — 1]?

Also, from the definition (7.13) we note that the dimensionless measure ¢ of the oscillatory
transverse shear is given by »

r O, hlln (1/7,) =11 (h/R)23, 9y
q=j Uy dr ‘ 2I'd;h(h/h)% I'dyg 7x } (819

(8.13)

All these results are considerably simplified if instead of neglecting powers of 5, we make the
stronger assumption that the roughness height is so small that the reciprocal of [In (1/7,) — 1]
is negligible. (From the definition (8.6) it would also follow that I is negligible.)
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Next, we infer from equation (6.4) that the oscillatory part of the leading-order concentration
perturbation is given by

ch = angoondT{ ("/5)%[13191’7*) - 1]} (8.15)

As with all the results for the contaminant distribution, this result is equally applicable to the
salinity distribution. Thus, in equation (8.9) for the secondary flow it is only the steady con-
tribution (0, s,) to the transverse salinity gradient 9, s, that remains to be determined (i.e.
(0, %) = —q0;5). In particular, it follows from equations (8.15) and (8.9) that ¢, is exactly out
of phase with the leading-order tidal current u,. Furthermore, both {D;) and (D, ¢) are identically
zero.

Proceeding to equation (6.5) for the vertical concentration gradient, and then using that
result in the formula (5.10), we arrive at an expression for the vertical gradient Richardson

number:
. Pedgsh? 1,0 72lny
Ri, = U(IU]) I 13(/2/5) =7
ﬂgaysoﬁ2)2r49§3 , 52{ , 7ty 1 } 10
+(Th) e W - =) G0

We notice that at the turn of the tide R7;, and hence (v,3);, becomes singular. Thus, for a brief
span of time the formula (6.6) for the perturbed eddy viscosity is inapplicable. Fortunately, for
the limited needs of the present study, the results do not depend upon the way in which the
singularity in (vy3), isremoved. Indeed, ifIn (1/7,) is very large then it turns out that Richardson-
number effects could have been totally ignored.

We now have sufficient information (8.5), (8.7), (8.9), (8.16) to solve equation (6.10) for the
order & correction u, to the longitudinal velocity. The singularity of strength U2 in (v,5), leads
to a weaker Up! singularity in u,. However, when we calculate tidal averages this term makes
no contribution, provided that Cauchy principal values are taken of the singular time-integral.
If, instead, we had resolved the singularity and (v,3), became very large but finite, then the
contribution from this term would not necessarily be exactly zero but nevertheless be very
small. The weaker U;? singularity in R7; goes over to a non-singular (and non-zero) term in u,
and presents no difficulties. The full expression for the residual current is

N LCT%, 3
(lleal> = —913<|5U0|>I’(h/}i)2 [In (1/74) — 1]

— Bg Oy 5h? PBg o, sh?
Lo P(h/R)E[In (1 —-+85 s - _TI'(h/R)E, (8.17
PRAIIAN (h/R)E[n (1/74) — 3] +§ AT (/) ( )
where the three contributions correspond to the first three terms in equation (6.10).
We recall that the residual slope (9, §;) of the free surface is to be determined so that there
is no net flow associated with the buoyancy-driven current. This constraint leads us to generalize
the definition (8.5):

. 1 v (h/h)} '
o) r=—— " U179, -1y (5.19)
Y+—Y-Jy- Vi3
and to introduce a further non-dimensional function
A 1 v (k/h D
dyr-——[" Y 2 (1m0 -3 +852] oy (8.19)
Yi—y_Jy- P13

35 Vol. 2906. A
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1 A
A(y)
I'(y)
0
[ pA

Ficure 7. Graphs of the functions f[y) and A (y).

(see figure 7). In terms of I'(y) and a (y) the salinity-induced free-surface slope along the estuary

is given by ~ N
806> = — Pg 5hA(y,), (8.20)

and the tidally-averaged stream function for the horizontal circulation has the representation

(@) = B ey tdly,) P0) - At (8.21)

The Richardson-number effect is represented via the (9,3/K,) term in the definition (8.19) of
A (y). Thus, if the roughness height is so small that In (1/7,) is a large quantity, then, for the
class of estuaries being studied here, Richardson-number effects can be ignored. It deserves
emphasis that the negligibility of this physical effect is principally related to the phase and not
to the size of the terms.

Close to the right-hand shoreline y = y_ where the water is extremely shallow, we can infer
that the function I'(y) initially grows as (k//)¥ and that A(y) is smaller still by order (k/k). Thus,
when y —y_ is small it follows that (@) is positive and increasing — hence that the residual flow
is seawards. A similar argument enables us to deduce that, close to the opposite bank, (@) is
negative and increasing. Again the flow is seawards. The physical interpretation is that, in
accord with intuition, the saltier water tends to intrude upstream in the deeper central part of
an estuary and the compensating downstream flow of fresher water occurs in the shallows (see
figure 6).

Finally, we consider equation (7.14), or equivalently equation (6.9) for the quasi-steady
concentration gradient across the estuary. Using the above results (8.12), (8.13), (8.14), (8.21)
and most crucially the equation (8.15) for the oscillatory part of the salinity gradient, we arrive
at the equation

@y e [%;;2 +(ﬁ'g<ayso>521’ 2)2 (h/R)? +(ﬂgag552F 2)2 (h/R)? <q2>]

AT ) 962,95, T\ QU ) 967,93,
L [(Bedkr (A(y,) Ply) —A(y)| 4o I
‘ag”[( AN ) /R } 7

_ Bg (0, so» B2 ﬂga£§}Z2]"2 (h/h)2 .
2( (Gl>? )( AU? )96,?3933@ >]. (8.22)
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For clarity, a common factor {|U,|)#2(k/k)%/I" and additional terms involving inverse powers
of [In (1/94) — 1] have been omitted.

Of particular interest in the present context is the role of buoyancy. From the left-hand side
terms of equation (8.22) we can infer that both the steady and the oscillatory transverse salinity
gradients augment the tidally-averaged dispersion across the estuary, and therefore tend to
reduce the steady transverse concentration gradient (0, ¢,). Similarly, on the right-hand side
the quadratic salinity term has the opposite sign to the residual current term, so also tends to
reduce (0, ¢,). The physical origin of this quadratic term is the tidally-averaged dispersion across
the estuary of the oscillatory concentration perturbation. When the tide is on the ebb the oscil-
latory contribution to the salinity is of the same sense as the steady transverse gradient (i.e.
saltier at the centre of the estuary). Thus, the secondary flow and shear dispersion across the
estuary are particularly strong. For the same reason the total transverse concentration gradient
0, ¢+ <0, ¢y is also large. This coincidence of strong gradients and strong dispersion greatly
increases the net transverse mixing. As with all quadratic effects, the flood tide with its weak
gradients and weak dispersion across the estuary, does not fully cancel out the increased mixing.
Hence, as has already been stated, the overall effect of this tidal-oscillation term is to reduce
{0y co-

For the important special case, in which salt is the contaminant being studied, equation
(8.22) ceases to be linear. With an eye upon the way in which the equation is subsequently used,
we re-arrange and non-dimensionalize the terms:

(BT [y, o (VL RATTY) (B2 (RN] (B Gy Iy ()0

QT? qQUIE ) 9693,7 \4, 1" QUL ) 96957,
 ((Bgdgs)2 k24, I\ (A(y.) D(y) —4(y)
- (e ) ) e

This is a cubic equation for {0, 5,). Fortunately, the positivity of the coefficients on the left-hand
side ensures that there is a unique real solution. Moreover, the sign of {3, 5,) is the same as that
of the horizontal stream function {(®@). Thus, the tidally averaged salinity is indeed greater in
the deeper water at the centre of an estuary than it is in the shallower water at the sides.

9. DISPERSION COEFFICIENTS

A basic requirement for a classification scheme is that the results should be expressed in terms
of appropriate dimensionless combinations of physical quantities. For example, the scalings
employed in the nonlinear equation (8.23) were motivated by the facts that the importance of
tidal oscillation effects is thereby indicated by the single factor (¢?42/4,I"), and that the co-
efficients of the remaining three terms are of order unity. Also, it is preferable that the magnitude
of the dimensionless parameters should indicate the relative importance of the corresponding
physical effect. For example, the repeated occurrence of the large quantity I" throughout the
above analysis means that it is desirable that the chosen parameters should include appropriate
powers of I. It was for this reason that the functions *(y) and AA(y) were rendered of order unity
by the inclusion of I" factors in the definitions (8.18), (8.19).

These considerations lead us to define two parameters F' and G associated respectively with
the importance of flow oscillations and of the longitudinal density gradient:

R Uy )2 0¢5)2h3BI™
F= ——-—BLw‘;? , G= 8% BI g [}0 Tt (9.1)
35-2
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486 R. SMITH

Here o is the tidal frequency and 2B =y, —y_ is the local estuary width. As noted above, the
tidal effect in the transverse dispersion equation (8.23) is measured by the factor (¢%2/4,I).
From equation (8.14) and the definition (9.1) of F, we find that

qg= F? (TB//z)%(jsin (wT+%) (9.2)
. (W) [In (1 /1) ~ 1]

., m Bo, n(1/94)—

TTLTWRY T el ®-8)

where additional terms of order I'-! have been neglected, and we have made explicit use of the
hypothesis (vi) that the tidal current is sinusoidal. It now follows that

(R[4, Ty = }F . (9.4)
Since the function § is of order unity, the parameter F'isindeed a direct measure of the importance
of flow oscillations. Similarly, the buoyancy parameter G stems from the scalings adopted in

equation (8.23), with the obvious substitution 2B/ for the cross-sectional area 4,. For subsequent
convenience, we rewrite equation (8.23)

r[8Ry+ InFGE(R/R)?] + 13 (h/R)? = 2G {A () {Z%;A y )}, (9.5)
where n = 1/96%,93; and r denotes a Richardson number associated with transverse, rather than
vertical, density gradients

7 = BgC0y 5oy P [{|Uy| )2 (9.6)
The selection of parameters (9.1) implies that the appropriate non-dimensionalization of the

contribution Eg, Ey to the longitudinal dispersion coefficient is
Eg = B|Uy|» Eg(F,G), Eq = B{Uy|» Er(F,G), (9.7)

where the circumflexes * are used to signify non-dimensional quantities, which are formally of
order unity. The actual size depends, of course, upon the local estuarine parameters F and G.
The non-dimensional analogues of the dispersion formulae (7.15), (7.16) are

hoo S [ 44w F) —A)dy

EE v [BRo+ InFGE(h/R)2 +nr2(h/R)2] (R/F)Y (9.8)
by =55 f Ik, +%”FG€?2<’Z//¥>2 + Bnr®(h/R)?) (k)R dy
- F (v+ n2FGé4r2 (/z//z) d (9 9)

T2B),. [3Rs+ IFGE/R)® T nrr /Ry Y

The functions I, 4, ¢, rinvolved in these expressions are defined in equations (8.18), (8.19), (9.3),
(9.5) respectively, and n = 1/969%, 5.

For weak buoyancy we can confirm analytically Macqueen’s (19784, 1979) deduction that
in wide estuaries the effect of salt is to increase the longitudinal dispersion coefficient. To do this,
we seck Taylor’s series expansions for 7, and hence for Eg and Ey, in powers of G. The resulting
expression for the total (non-dimensional) dispersion coefficient due to steady and to oscillatory
transverse shears is

G

55 | wndi(h/R)dy

E+E —2Bf Ph/R)Edy+ 57

vt 4{4 y.)[(y) — j( )2 \
2Bf 3%, (h/h)E dy+0(G?). (9.10)
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Since the integrands are all positive and G is positive by definition, it follows that weak buoyancy
increases the dispersion. The F2G term represents the interaction between tidal and buoyancy
effects, and is related to that part of the secondary flow that is driven by the oscillatory transverse
salinity gradient. The G term is associated with the steady horizontal circulation and therefore
would be ignored in Macqueen’s (19784, 1979) analysis.

Remarkably, the approximation (9.10) to the non-dimensional dispersion coefficient is valid
over a substantial range of the estuarine parameters. First, it happens that the G2 term in the
Taylor’s series is zero. Also, in either of the limits of large G or of large F the first three terms in
an asymptotic expansion for the dispersion are

G fv+ o F v+ .
SE . Bty gz [ Ry

v+ 16 {4(y,) F(y) A( 14
2BFf L 7 hy/}i)— Phdy. (9.11)

Thus, for large G the dominant #2G term agrees with equation (9.10) and the error is of order
unity, while for large F both the F?G and F terms are correct and the error is only of order F—1.
Hence, it is only for small F with moderate values of F2G that the approximation (9.10) is
suspect. Since the density gradient parameter is quadratic in 9,35, it follows that the dispersion
equation (7.1) is approximated by the Erdogan—Chatwin equation (Erdogan & Chatwin 1967,
see also Smith 19785).

To obtain quantitative results we must specify the cross-sectional shape and the bottom
roughness across the estuary. For reasons of tractability we model In (1/7,) as being constant.
Thus, the Chezy coeflicient I'is given by

= (K}/RR) [In (1/74) — 11 /s, (9.12)

where the overbar denotes the cross-sectional average value. Using this result in equations
(8.18), (8.19), (9.2), we obtain the expressions

Es+Ep =

1) =55 /)y, (0.13)
At) = 55| i/, (9.4
d(y) = nBo, hE/HARE, (9.15)

where, for consistency with the use of equation (8.23), we have neglected additional terms of
order I'1. For example, the vertical stratification (9,,/k;) contribution to 4 (y) is ignored (see
the discussion following equation (8.21)). Substituting the expression (9.13), (9.14), into
equation (8.21) for the horizontal stream function (@), and then differentiating with respect
to y, we obtain the result =

(e ) (9.16)

)y = 0y S 1 (5

Thus, the steady upstream intrusion of saltier water is confined to those parts of the estuary

where the local water depth exceeds /¥ /7% Also, the upstream residual velocity is greatest at the
deepest part of the estuary, while the maximum downstream residual current occurs where the

water depth is %—h—% /—lE’
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488 R. SMITH
For an estuary of parabolic cross-section
h=gh[1—(y/B)*], -B<y<B, (9.17)

(see figure 8) the integrals and cross-sectional average values can be evaluated explicitly. In
particular, we record that

= &n@hE, R = Sn(3h), (9.18)
d(y) = —3(y/B) [1 - (y/B)*] 4, (9.19)
A(y,) P(y) - A(y) = —§nL(y/B) [1 ~ (y/B)"]E, (9.20)

F1cure 8. Definition sketch for the cross-section used in the analysis.

and that the Taylor’s series approximation (9.10) becomes

Ry nFG 566G
Byt By = aj6l TFE, 28876 T B AR,

= 0.064F"+ 0.070F2G + 0.027G, (9.21)

where we have taken 9,; = K3 = 0.4 and K, = 0.2 (see equations (8.1), (8.8)).

\

\011
\wos

2

——— 002
0 0 5 10
G
Frcure 9 Frcure 10

Ficure 9. Contours of the steady buoyancy-driven contribution g to the non-dimensional dispersion coefficient
E/B{|UI).
Ficure 10. Contours of the oscillatory transverse shear contribution By to E/B{U|).
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9 ES+E<—=2

Ficure 11. Contours, , of £+ E; compared with the contours, ~——,
given by the 3-term Taylor’s series approximation.

Itisnow a straightforward computational task to solve the cubic equation (9.3) and to evaluate
the dimensionless contributions £ and Ey to the longitudinal dispersion coefficient. Figures 9
and 10 respectively give contours of £ and E, as functions of the flow oscillation and density
gradient parameters for wide estuaries with parabolic-depth profiles. We observe that Eg is
principally a function of the density gradient and tends to be reduced by flow oscillation effects,
while £y is principally related to the tidal current and is increased by salinity effects. Figure 11
gives a comparison between the contours of Eg+ Eq as given by the numerical results and by
the Taylor’s series (9.21). In accord with the above deductions, the simple approximation is
tolerably accurate over a wide range.

For the third significant contribution, Ey, to the longitudinal dispersion coefficient, the only
non-zero term in the expression (7.17) is the Elder (1959) D, term. Thus, using equation (8.11)
for Dy, and assuming that the tidal current U, is sinusoidal, we arrive at the result

Ey = 0.4041(§) (/%) | Uyl £/ T3 R, (9.22)

i.e. the generalization of Bowden’s (1965) results to estuaries of non-constant depth. If we take
the estuary to have a parabolic cross-section, and K3 and 9,5 both to have the value of 0.4, then

we obtain
Ey =105 K|Uy|)/T. (9.23)

10. A CLASSIFICATION SCHEME FOR DISPERSION MECHANISMS
The scaling of Ey, equation (9.22), is different from that of Eg and of Ey, equation (9.7),
because the vertical shear dispersion does not depend upon the estuary breadth 2B. However,
to permit a direct comparison between the importance of the buoyancy, flow oscillations, and
vertical shear effects, we represent the longitudinal dispersion coefficient by the formula

E = B{|Uy|){(10.5/I"%) (I'k/ B) +0.064F + 0.070FG +0.027G}. (10.1)
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490 R. SMITH

The artifice of including the I" factor in the vertical shear parameter I'2/B ensures that the
numerical coefficients are all of a comparable magnitude. For example, with I" = 20 the co-
efficient of I'4/ B in equation (10.1) is 0.026. Thus, to a first approximation the dominant physical
mechanism controlling the long-term dispersion of contaminants or of salinity along a wide
well-mixed estuary depends upon which of (I'2/B), F, F?G and G is the largest. The respective
mechanisms are the oscillatory vertical shear (Bowden 1965), the oscillatory transverse shear
(Okubo 1967), the interaction between tidal and cross-estuary buoyancy effects (Macqueen
1978 ), and the buoyancy-driven steady horizontal circulation (Imberger 1976).

The four dimensionless factors all have different dependence upon the estuary breadth 2B
(see the definitions (9.1) of F and G). Thus, we can envisage circumstances in which each
mechanism becomes dominant for some range of B. For example, if we specify

h=10m, |G|y =1.5ms™1, fgd§=5x10"7s"2, I =20, (10.2)

then, for B less than 100 m the interaction term dominates; for wider estuaries, with B less than
800m, the transverse oscillatory shear dominates; for still wider estuaries the vertical shear
dominates; and finally for B in excess of 1000 m the steady circulation is the principal dispersion

10%-

predicted dispersion coefficient/(m? s-1)

10+ Th/Bterm \ ’ /

1 1 1 1

0.05 01 0.2 05 - 1 2
B/km
Figure 12. The longitudinal dispersion coeflicient E as a function of the estuary width for the conditions given
in equation (10.2) and also for the case with twice as large a salinity gradient.

mechanism. Figure 12 shows the predicted dispersion coefficient as a function of B, together
with the results for double the longitudinal salinity gradient.

An important restriction upon the applicability of the above results is the requirement that
the estuary be wide. We recall that for contaminant dispersion, an estuary is defined as being
wide if the time scale for cross-sectional mixing exceeds the tidal period. From the formula
(8.13) for the transverse dispersion coeflicient this condition can be written

I 2n
2 —
S AN ET I ey e Rt (10.3)
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where n = 1/9692,%, = 0.163 and the G? term allows for the circumstance in which G is large
but F is extremely small. Using the definition (9.1) of ¥, we rewrite the constraint (10.3)

(Th/ B)YFY[3R, + 1nF G + G < I'/2n. (10.4)

This requirement is quite stringent since it applies when the three estuarine parameters F, G,
(I'k/ B) have values of order unity. In particular, for the illustrative example used above, the
predictions are invalid for B less than about 100 m (130 m in the doubled gradient case).

It deserves emphasis that the results derived in §§ 8 and 9 are not strictly quantitative. Errors
of order I'* have been incurred in the cross-stream dispersion equation (8.22), in the neglect of
vertical stratification (9.14), and in taking the roughness height 47, to be proportional to the
local water depth (9.12). Also, the turbulence model (8.1) is a considerable simplification upon
the actual time-dependent turbulence (Maxey 1978). However the greatest source of uncertainty
lies in the strong dependence of the results upon the estuary shape and roughness. For example,
if the estuary were triangular then equations (9.17)—(9.21) would need to be replaced by

h=2k(y/B) for 0<y< B, h=2k[2-(y/B)] for B<y<2B, (10.5)

Bt = ;g:(zﬁ)% B = 2(2h)%, (10.6)
§(y) = fsm(y/B)* for 0<y< B, (10.7)
4(9.) P)~4(y) = $L/B)E~ (9/B)] for 0<y< B, (10.8)
2 4
By =" P () oA O (10:9)
and the final model equation (10.1) for the total longitudinal dispersion coefficient becomes
E = B{|U,|y{(12.6/1"®) (I'k/ B) + 0.16F + 0.37F2G + 0.056G}. (10.10)

Thus, each coefficient is significantly larger than the corresponding coefficient for a parabolic
estuary. Similarly, a relative error of 0 %, in the roughness height leads to errors of about — 36 %,
in the value of the density gradient parameter. Thus, the results of our model calculations are
not sufficiently precise to replace field observations. Rather, they permit us to determine which
physical mechanisms are dominant and hence how the dispersion coefficient scales when con-
ditions are changed.

The above considerations are well illustrated if, following Macqueen (19784), we take the
physical parameters to have values appropriate to the Thames 30 km seawards of London Bridge
(in the vicinity of the Littlebrook power station):

B =350m, h=10m, {|{y|) =1.16ms™, fg0,5=2.4x10"6s72 (10.11)
To determine the non-dimensional Chezy coefficient I" we assume that the bed is smooth, so

that locally, at any point across the estuary, the ratio ||4,|| /u4 of the vertically averaged velocity
to the friction velocity, is about 20,

ie. [In (1/54) —1]/D15 = 20. (10.12)
If the estuary cross-section is parabolic, then it follows from equations (9.1), (9.2) and (9.12) that
" TF/B =062, F=074, F2G=281 G=5.23, (10.13)

and that the longitudinal dispersion coefficient is given by the sum

E=53+18.4+81.5472.0 = 177.2m?s™L (10.14)

36 Vol. 20g6. A
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Also, the wide-estuary condition (10.4) is indeed satisfied. On the other hand if, as was done by
Macqueen (1978 4), we model the cross section by an equilateral triangle, then we arrive at the

result
E=6.1+46.0+494.24+149.2 = 697.5m?2s™1, (10.15)

(Macqueen obtains the much larger value 1820 m?s~1, but as has already been pointed out, his
method amounts to an interpolation formula and cannot be expected to be accurate when
the interaction terms dominate). For average flow conditions the dispersion coefficient at
Littlebrook, inferred from the salinity distribution, is about 350 m? s~ (Macqueen 19785).
Despite the variation in the estimates (9.37) and (9.38) for E (a factor of two either side of
the observed value), there is agreement on the fact that the physical mechanisms primarily
responsible for longitudinal dispersion at that reach of the Thames are: the interaction between
tidal and cross-estuary buoyancy effects and the buoyancy driven steady horizontal circulation.
Since these F2G and G terms dominate respectively for small and for large estuary widths, it
follows that the same two terms will give the major contributions to the dispersion well upstream
and downstream of Littlebrook. Thus, in the Thames downstream of London Bridge, the dis-
persion is strongly linked to the value of the local salinity gradient. However, contrary to the
situation in narrow estuaries (Smith 19%77), the effect of buoyancy is to increase the dispersion.
Specifically, the length scale of the salinity intrusion up the estuary varies as the inverse one-third
power of the freshwater discharge rate. Hence, even in a severe drought with an eightfold
reduction in river run-off, the salinity would only penetrate about twice as far upstream as usual
(i.e. wide buoyancy dominated estuaries, like the Thames downstream of London Bridge, are
not particularly vulnerable to the effects of droughts). An equivalent characterization of the
buoyancy-dominated régime is that the longitudinal dispersion coefficient varies as the two-
thirds power of the fresh water discharge rate. Qualitatively this is similar to the observed
behaviour of £ in the Tay (Williams & West 1973), and in the Severn (Uncles & Radford 1980).

I wish to express my thanks to the following: Dr K. W. James for encouraging me to undertake
research into the dispersion of solutes, Dr J. F. Macqueen for many helpful discussions, and the
C.E.G.B. for financial support.

APPENDIX. AN ALTERNATIVE DERIVATION OF THE
DISPERSION FORMULAE
In a recent study of transverse dispersion (Smith 1979), the author has derived a model
equation that fairly accurately describes the horizontal dispersion of a buoyant solute in a steady,
uniform, vertically well-mixed current. If we assume that essentially the same equation applies
when the water is of non-uniform depth and when the current is unsteady, then we are led to
consider the equation

(h+8) Bllc] + (h+ &) [l Bule] + (~+ &) [[o] 3y e]| + 0, PO, ¢ — O, D, ||c]

-5 & [argenal @

Here the dispersion coefficients Dy, D;, K and the horizontal stream function @ are related to the
detailed structure of the flow field by equations (7.9)—(7.12) above (equations (104, b, ¢) and
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(94, ¢) of Smith 1979). The presence of the D, terms indicates that, as a consequence of there
being a secondary flow, the principal directions for maximum and minimum dispersion are not
aligned along and across the estuary (see figure 13).

We now analyse equation (A 1) on the hypotheses

(i) The estuary is much longer than the tidal excursions and the estuary width;

(ii) Lateral mixing takes more than one tidal period.
The other major hypotheses (ii) (iv), (v) are implicit in the derivation of equation (A 1).

>
-

A >y

Co,
s,
'
312 ”

Ficure 13. Perspective view of a concentration contour soon after contaminant
release when there is a shear flow in two directions.

Proceeding as in § 3, we introduce a small parameter
e=9%/|%, (A 2)

where # and & respectively are typical width and length scales for the estuary. Next, we take
the transverse dispersion coefficient K to be of order #%e?, and the tidal frequency to be of
order #~'%¢e#, where % is a typical tidal velocity. Lengthy arguments of the type illustrated in
figures 3 and 51lead to the necessary scalings for the termsin equation (A 1) if maximum generality
is to be achieved. Unlike the previous cases studied in this paper, the exponents # and 7y remain
undetermined except for the inequalities 1, y > £ implied by the two hypotheses.

With the relative sizes of the terms made explicit, equation (A 1) can be written

(h+6178) 2700y e] + (bt €2AL) €80, |e] + (- €2E) (] +e47=2 ] ) €0,
+ (h+€E) el|o] 8, o] +0, (67~ ) €0,|c| — €0, (e7~®) 3, ]
B 67‘2ﬂD0 "D/ [(h+ €L ea:c”c”
= (0 0)) [ey‘/’Dl e’k H(h+el‘ﬂ€) 6yllvl!]' (43

Here ¢~#7 is the tidal timescale (Cole 1968, ch. 3), e#~7—2T is the slow timescale associated with
the long-term evolution of the contaminant distribution, and (|| ) e1+7—2 is the relatively weak
36-2
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non-tidal velocity associated with the freshwater discharge into the estuary (i.e. the tidal bulk-
velocity [[u]’ has zero tidal average).

We shall arbitrarily set # = 0, ¥ = 1 in the following calculations. This has no effect upon the
final conclusions, and has the minor convenience that equation (A 3) 1nvolves only integer
powers of e. Thus, we seek solutions of the form

o] = | +e[e|®+ee] @+ (A

At leading order in ¢ we find that ||¢|® is independent of the fast timescale 7. Next, at order ¢,
the tidally steady terms imply that ||¢|@ is uniform across the estuary, while the fluctuating
terms yield the equation

Ol e ® = —[lul" 0] (A 5)
Thus, ||¢|© can be identified with the cross-sectionally averaged contaminant concentration ¢,
and the oscillatory transverse concentration gradient can be expressed

@) = ~2,¢ [ 3 Jul dr = - g, (a0

where ¢, as defined previously in equation (7.13), is a dimensionless measure of the oscillatory
transverse shear.

Proceeding to order €2, the steady terms give a transverse dispersion equation for the steady
concentration gradient across the estuary

3, (KK 3, el ®)) = 8, (-{Kq) 0, ) +0,{ D)3, & — 0, (A{ D) 0, ). (A7)

Since there is no net flux of contaminant across the shoreline, this equation can be integrated

at sight to give the result
K D D,
0,{|lc| @y = (<< q>> /z<( >> E 1>>} 0,¢C (A 8)

Thus, in the now classical manner of dispersion calculations, the steady and unsteady transverse
concentration gradients are both proportional to the longitudinal gradient (Taylor 1953). At
this same order in ¢, the unsteady terms in equation (A 3) can be written

R, e|® = — Ru]” 3]l e|® — Aljo] 3, ]| — B, @D, ¢+, (RKD, | c| V)" +3,(hD1 8, 2). (A9)

Finally, we take cross-sectional and tidal averages of equation (A 3) and, retaining only the
dominant (order €3) terms, we obtain the longitudinal dispersion equation

Aoy 24 Q40 [ a1 @y dy—2, [ (@0, oy dy
Y- Y~

—2, f " D8, Edy +0, f " KDL,y dy. (A 10)

Here 4 is the local cross-sectional area of the estuary and @ is the volume discharge rate of fresh
water along the estuary. To convert this equation into the standard form we perform one
integration by parts with respect to 7 on the i{|u||’ |¢]|®)term, substitute for 49 ||¢|® from
equation (A 9), and then perform an integration by parts with respect y. In this way we arrive

at the equation
A0y ¢+ Q0,¢—0,(4FE0,¢) = 0, ‘ (A 11)
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where the longitudinal dispersion coefficient £ is given by the lengthy expression

E= 5[ ety -2 KDY () 20,0y - S by, (1)

Equation (A 12) can be recognized as being equal to the sum Eg+ Ep+ Ey of the three
dominant contributions to the longitudinal dispersion coefficient (equations (7.15), (7.16),
(7.17)). Thus, we have an alternative derivation of the rather complicated key result in the
above paper. A great deal more work would be needed to confirm the applicability of equation
(A 1) in the present physical context (i.e. unsteady motion in water of non-uniform depth).
However, it is reassuring that the results (7.15)—(7.17) can be recovered in their entirety.
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